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Freihandexperimente 

Vortrag Heinrich Schenkel in Rapperswil, 27.August 2003
1. Der Begriff und der Zweck
Definitionen von Freihand- oder Handexperiment 

Dies habe ich in drei Quellen gefunden:
A
Von einem Freihandversuch sprechen wir, wenn ein Versuch mit einfachsten Mitteln durchgeführt wird. Die Experimentiermaterialien sind Gegenstände aus dem Alltag, häufig auch aus dem Haushalt. In der Regel spielt die Hand eine wichtige Rolle - als Stativ, Halterung, In-Gang-Setzerin des Geschehens.

B
Freihandversuche sind qualitative Experimente, die ein Phänomen oder einen Effekt besonders deutlich hervortreten lassen.

Dies geschieht unter Verwendung einfachster Mittel aus dem Haushalt, der Umwelt sowie der Physiksammlung.
C

Auf der CD-Hülle: Die deutsche Bezeichnung "Freihand" ist irreführend, denn freihändig Velofahren heisst ja gerade, dass man die Hand nicht gebraucht, während sie bei den "Freihandexperimenten" gerade das zentrale Requisit. Das Englische "hands-on experiment" sei da schon näher.
Charakteristika, die mehr oder weniger vertreten sind:

· Allgemein verfügbare Materialien, meistens im Haushalt, im Alltag vorhanden - aber doch hin und wieder etwas aus der Physiksammlung des Sekundarschulbereiches.

· Einfach, leicht durchschaubar, problemlos durchführbar

· Kurze Dauer
Zweck und spezieller didaktischer Wert von FHE
A

· als Einleitung, zur Motivation 

· zur Erarbeitung "handfester" neuer Inhalte

· zur Festigung und Vertiefung
B
· Weckt die Aufmerksamkeit der Schüler;

· Regt zum Nachmachen und Nachdenken an;

· Provoziert Vermutungen und Problemstellungen;

· Ist in vielen didaktischen Funktionen nutzbar;

· Einfache Geräte unterstützen den Erkenntnisvorgang;

· Die Physik wird "begreifbar";

C

Affektiv wirksam: Überraschtsein, Staunen, Verwunderung, Begeisterung, Zweifel - also Motivation fördernd

Schlussbemerkung zur Definition:
Das Ringen um eine gültige Definition hat natürlich etwas Hilfloses. Es gibt keine klare Abgrenzung. Alles, was wegführt von einem apparativ überladenen Physikunterricht, also einfach, überschaubar und vom Lernenden selber experimentell nachvollziehbar ist, kann als Handexperiment bezeichnet werden.

Dieser Punkt: Weg vom Furcht einflössenden, das Phänomen verdeckenden Apparat, dies ist mir wichtig, und ich bemühe gerne Wagenschein, um dies etwas zu vertiefen.

Einsatzmöglichkeiten von FHE: 
· Weitere Möglichkeit des Unterscheidens:
· Demoexperimente, die von Lehrkraft oder SchülerIn zur Diskussion gestellt werden.

· Als Motivation

· Zum Sammeln der Aufmerksamkeit

· Freihandexperimentieren, um systematisch ein Stoffgebiet zu erkunden

· 2. Versuch einer didaktischen Begründung für das Freihandexperiment

Es liegt auf der Hand: Beim physikalischen Übervater Martin Wagenschein zu beginnen. Er trat ein für die zentrale Rolle des Phänomens bei der Naturbetrachtung. "Rettet die Phänomene" heisst denn auch der Sammelband seiner Aufsätze und Vorträge. Er war gegen fachliche Verein​nahmung der Natur und auch gegen ihre verfrühte „Zerrechnung“.
In einem seiner bekanntesten Texte sagt er etwas zum Thema des speziell didaktisch hergerichteten Experimentiermaterials. Der Text heisst "Das grosse Spüreisen" und handelt vom mysteriösen erdmagnetischen Feld. Dessen Präsenz wollte er, Wagenschein, einmal etwas anders erfahrbar machen.

Es ist zwar schon nicht mehr eigentlich das reine Naturphänomen, es ist bereits ein artifizielles Experiment- aber nicht mit einem Material, welches so in den Physiksammlungen vorhanden ist und durch seine Form schon ausdrückt, wozu es zu dienen hat. Ein schlichtes grosses Sägeblatt wie dieses hier ist kein "Belehrungsapparat", eine kleine zugespitzte und grün-rot lackierte Nadel oder ein so farblich entfremdeter Hufeisenmagnet schon eher - Wagenschein spricht hier ironisch von "Propaganda-Lack". Diese Kompassnadeln, Lakaien des Magnetismus, tun "auf Grund ihrer Farbe" schon das Richtige. Rot zeigt nach Nord, grün nach Süd, wie es sich eben gehört. Wagenschein fragt sich nun angesichts des nicht angemalten, aber durch Darüberstreichen mit einem Dauermagneten magnetisierten Sägeblattes:

Ob es empfindlich genug ist, das Gefälle zu spüren, das, zwischen ihnen ausgespannt, uns alle durchdringt, auch uns magnetisch Unbegabte, daß wir uns ein Bild machen müssen und uns feine graue Fäden ausdenken, die wie parallele Telegraphendrähte zwischen Nord und Süd gespannt dieses Zimmer und die Stadt, das ganze weite Land, Wald und Feld, durchspinnen, (...)?

An einer anderen Stelle
 lese ich, das Apparativ-Technische betreffend: 

Die meisten denken heute wohl einfach an Technik. (...) Physik und Technik stehen ineinander gemischt. Aber auch die Verfasser der Schulbücher lieben es, auf die Umschlagdeckel Funktürme, Flugzeuge oder eine Elektronenmikroskop zu setzen.

Damit nähern wir uns der zweiten Gruppe: Sie sehen "Apparate" vor sich, (...) Forschungsmaschinen, Messmaschinen, Demonstrationsmaschinen. (...) Sie sehen sie, je nach ihren persönlichen Erfahrungen, als funkelnde Träger von Zauberkunststücken oder als verstaubte Quälinstrumente für abgeneigte Schüler. Für sie ist Physik oft nur eine Sache des Experimentiertisches und des Laboratoriums. Sie spielt sich an Geräten ab. Ausserhalb des Physiksaals gibt es kaum ein Wiedererkennen. Auf der Strasse allenfalls noch, im Wald nicht mehr(...). 

Der reine Forscher, etwa Faraday, will gar nicht Maschinen bauen. Aber die Sätze, die er sucht, bei denen er sich beruhigt, haben dennoch alle die Form "Wenn - dann." Wenn ich dies tue, dann geschieht auch jenes. (...)

Um solche Zusammenhänge geht es uns ja in unserem Fach. Wenn wir ein Experiment zeigen, so wollen wir vorerst mal Aufmerksamkeit erreichen, Erstaunen vielleicht, aber dann wollen wir vor allem das Denken anregen: Begründungen für das Gesehene suchen, das Entwickeln von Hypothesen und Modellen, das gedankliche Durchdringen der Situation. Wir wollen eine intellektuelle Befriedigung, vielleicht auch Beruhigung: Die Welt ist in Ordnung, sie ist verstehbar!
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A collection of 34 demonstrations is described which use only a plastic ruler and other simple
items. Many of the demonstrations have a quantitative component, making them suitable for
student experiments or at-home exercises. Although most are appropriate to introductory
physics courses, a few involve more advanced concepts.

L INTRODUCTION

It is surprising how many interesting physics demonstra-
tions can be done with a 0.304 m (12 in.) long grooved
transparent plastic ruler. Such rulers may be obtained at
most discount, toy, stationary, and business supply stores.
The transparency of the ruler allows many of the demon-
strations to be done on an overhead projector, but if this is
not considered important an opaque ruler may be used in
all cases. (Almost) all of the 34 demonstrations described
here uses only very limited other “apparatus™ besides a
Olastic ruler, such as paper clips, pennies, balls, clay, etc. In

~ a majority of cases, the demonstrations could also be done
as student lab experiments, or home experiments. Al-
though many of them may be well known, some may not
be. Moreover, some of them do not appear in any of the
well-known collections of physics demonstrations. -7

1. Measuring someone’s reaction time by dropping a
ruler

Hold a ruler by one end, and let it hang vertically so that
the lower end lies between someone’s thumb and index
finger. Challenge the other person to catch it as quickly as
possible, when you drop the ruler at an unannounced time.
You can easily calculate the person’s reaction time, 7, from
the distance, d, the ruler falls: ¢ = 2d/g. You will prob-
ably find a fairly reproducible value for a given person,
even when she changes the separation between her fingers.

2. Period of a compound (physical) pendulum using a
“winging ruler

Make a small hole very near the end of the ruler, and
allow it to swing on a straightened paper clip. Measure the
period, and compare with the value predicted for 1 foot
long compound pendulum: 0.91 s. Another alternative
would be to make the pivot hole on the ruler at a point
where the predicted period is exactly 1 s. In general, the
period of a compound pendulum of mass m, and moment
of inertia /, can be expressed as T’ = 2w yI/mgh, where h
is the distance from the rotation axis to the center of grav-
ity. Let d represent the distance from the top end of the
ruler to that axis, 4, for which the period is one second, [so
that //2—d is the distance from 4 to the center of mass].
For a uniform rod of mass m and length /, the moment of
inertia about the center of mass is (1/12)m/* so that, ac-
cording to the parallel axis theorem, we have the moment
of inertia about axis 4 given by I=(1/12)ml *+m(l/2
—d)2. The period can, therefore, be expressed as

|
T =D M
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with 7 given above. Requiring the period to be 1 s yields a
value of d=11.6 cm. An oscillation with a period of 1 s
makes it trivial for students to check the prediction by
counting off the seconds while watching the swings. Inci-
dentally, it seems remarkable that the period of oscillations
of a compound pendulum about an axis only 3.6 cm from
the center of the ruler is almost the same as the period
about an axis at one end, especially considering that the
period when the axis is at the center of the ruler is infinite.

3. Period of oscillations of a ruler balanced on a cylinder

Another example of simple harmonic motion occurs
when a ruler is balanced horizontally atop a cylinder, such
as a soda can, and given a push away from its equilibrium
horizontal orientation. It can easily be shown that, for
small oscillations, the period is given by

')
= oo

I=2m e r—dy 2
where / is the length of the ruler, r is the radius of the
cylinder, and d is the very small distance the ruler’s center
of mass lies above the contact point of the ruler with the
cylinder. You can test the validity of this equation by ob-
serving the oscillation periods using cylinders having var-
ious radii. However, if you try the experiment using cylin-
ders having radii that are not much larger than d, such as
stick pens or pencils having a round cross section, you will
probably find that achieving balance is difficult, and that
only very small oscillations can be observed. For cylinders
having radii less than d the equilibrium is unstable, and no
oscillations can be observed.

4. Collisions of balls rolling in the groove of a ruler

Observe a collision between one smooth steel ball inci-
dent on a second stationary steel ball of equal mass placed
in the groove of a level plastic ruler. If the collision were
elastic, and we ignored rotational motion, an incident ball
would be brought to rest after the collision. But rotational
motion, of course, cannot be ignored for rolling objects.
Because of spin effects, you will probably find that the
speed of the incident ball after collision, expressed as a
fraction of its initial speed, depends dramatically on how
forcefully you project it. If the incident ball is given a
forceful push, you will probably find that it does, in fact,
lose nearly all its original velocity after collision. This is
just like the case of a cue ball, which is nearly stationary
after being projected forcefully into another ball in a
head-on collision.

In such cases, we can explain the observations by noting
that the incident ball’s motion before impact tends to be
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Dass dies mit einfachen experimentellen Mitteln oft viel besser und reiner gelingt, wissen wir mittlerweile schon. Wagenschein schreibt dazu:

Dass Maschinen, Apparate, Mathematik - sich vor die Natur hindrängen und ihr eigentliches Wesen unserem Blick verstellen können, das kommt eben daher, dass mit der Natur einiges angestellt worden sein muss, ehe daraus Physik wird; so sehr, dass manche gar nicht mehr merken, wovon die Rede ist, worum es geht.

Dieses fast lauernde "Umstellen" der Natur kann manchmal in der Verschulung fast humoristische Züge annehmen, wie dieses Beispiel zeigt:

Schüler und Schülerinnen, die solche "Experimente" mit so unwürdig gängelnden Anleitungen vorgesetzt bekommen, die haben es verdient, dass man ihnen eine Serie schöner und anregender Handexperimente anbietet!

Noch einige Gedanken aus dem Buch von Heinz Muckenfuss

Viele Lehrgeräte, also standardisiertes Experimentiergerät sind hoch funktional, vom Zweck und Ziel her konstruiert, und sie weisen sich dadurch als spezifisch „physikalisch“ aus und sehen Alltagsgegenständen, aber auch Laborgeräten des Forschers sehr unähnlich. Sie strahlen schon Abstraktion und Reduktionismus aus, sie sind ästhetisch verarmt. Man gelangt mit dieser hergestellten Natur rasch und störungsfrei zum Ergebnis, indem man die Naturphänomene „hervorbringt“.  Es mag angehen, am Schluss, wenn die Erkenntnis anderweitig (z.B. durch Nachdenken) gewonnen worden ist, den Sachverhalt am „Gerät“ nachzuprüfen - aber es darf nicht am Anfang der Erkenntnisgewinnung stehen. 

Müssen Experimente immer gut vorbereitet sein? Wenn dies Elimination von Störfaktoren bedeutet: Nein! Improvisation auf Grund von Schülerideen im Verlauf von Demonstrationen ist positiv zu werten. Wichtig ist, dass Experimente auch die Sinne ansprechen und dass das Sinnliche nicht immer hinter Messapparaten, Elektronik, Stativstangen versteckt wird. Der Erlebnisgehalt eines sinnlich erfahrbaren (meist einfachen und durchsichtigen) Experimentes ist grösser und haftet so besser im Gedächtnis.

· 3. Meine "Rosinen"

· Herumschwingen einer Münze auf Kleiderbügel

· Brett Herumschwingen mit schönem Weinglas

· Minimalflaechen auf dem Overhead

· Interferenzexperimente mit gekratztem Doppelspalt

· Interferenzexperimente mit CD

· Interferenzexperimente mit Strukturen: Bibel auf Microfiche , Vogelfeder

· Bastelspektroskop mit Interferenzfolie

· Spielzeug fallende Ringe

· Radioaktivität: Ballon / Tennis / Velofahren (weggelassen)

· usw

Weitere "Rosinen" sind in meiner Filemaker-Datei zu finden, welche ich gelegentlich auch auf meine Homepage lege. Darin sind etwa 1500 Titel von Artikeln aus der Zeitschrift "The Physics Teacher" aufgelistet. Mit dem Suchbegriff "Handexperiment" kann man etwa 50 als Handexperimente klassifizierte Einträge finden. 

Die Datei ist aber auch sonst zur Suche nach Experimentierideen zu bestimmten Themen hilfreich. Die Auswahl der Artikel geschah natürlich nach persönlichen Interessen und Präferenzen.

Die Artikel selber sind nicht enthalten! Sie koennen bei mir (gegen Porto und Kopierkosten) angefordert werden. (heiri.schenkel@intergga.ch).
4. Eine anspruchsvolle Sequenz von FE: Physics with a ruler.

[image: image2.jpg]more sliding than rolling, as a result of its forceful push, so
that the complications of rotational motion are minimized.
On the other hand, if you slowly roll one steel ball towards
another, you will find that the incident ball continues to
roll forward after collision with an appreciable fraction of
its initial speed—just as in the case of a collision between
pool balls. In such cases, we may assume that the incident
ball is rolling without slipping before the collision, and that
it is momentarily brought to rest by the collision. If we
further assume that little spin is transferred between the
smooth balls during the collision, the incident ball main-
tains the spin it had just before the collision. This spin
causes the ball to accelerate forward, until it is rolling
without slipping.

In demonstrations to introductory classes you may wish
to downplay the effects of spin, and emphasize the first
case, where the incident ball is given a vigorous push— so
that it is nearly sliding. In fact, the higher the speed of the
incident ball, the less it spins before impact, and the more
nearly it is at rest after collision. If, on the other hand, you
wish to accentuate the effects of spin, you can try deliber-
ately giving the incident ball backspin or topspin, when
you launch it. (You can give it backspin, for example, by
pressing your finger down on the back half of the ball,
causing it to “squirt” forward, while spinning backwards.)
A backspinning ball should be found to rebound back-
wards after hitting a stationary ball. It is also interesting to
examine collisions between balls of unequal mass—
especially, the difference found when you switch the roles
of the incident and target balls. The transparency of the
ruler allows the demonstration to be performed on an over-
head projector. Even if the projector is not leveled, you can
always find some orientation of the ruler which will be
level.

5. Ball rolling in the groove of an inclined ruler

Using a ruler, you can verify Galileo’s observation that
balls roll from rest down a flat incline a distance that is
proportional to the square of the time, as required by a
constant acceleration. Place the ruler on an overhead pro-
jector, and level it by placing enough strips of index card
under one end, so that a metal ball does not roll when
placed on it (or else just find the orientation of the ruler for
which it is level). You may find that, due to ruler warping,
a ball will not be in equilibrium at various points on the
ruler. In this case, either find a flatter ruler, or else tape the
ruler to a flat surface or back-to-back to a second ruler. If
you are using a single ruler as the incline, be sure to use a
light enough ball, so that the ruler does not flex apprecia-
bly when the ball is placed on it. The distance, x, a solid
ball rolls down an incline from rest is given by x= laf*
=1(3g sin 0)1 2. For a ruler of length L,if we use the small
angle approximation, sin =0, we find that the distance
one end of the ruler needs to be raised for the ball to roli a
distance x in time ¢ is given by Ay= LO=14Lx/(5g7). If
you want the ball to roll 2.54 cm in 1 s, four times that in
2 s, and nine times that in 3 s, the required elevation of one
end of the ruler Ay, would be 1.85 mm, based on the pre-
ceding equation. Prop one end of the ruler up by the re-
quired amount, using the needed number of index cards
(about eight). Make marks on the ruler at a distance one,
four, and nine times 2.54 cm from some starting point, and
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observe the ball as it rolls down. You can count off the
seconds as the ball rolls, and see if the ball passes each
mark at 1,2, and 3 s.

6. Sliding two fingers under a ruler

Rest a horizontal ruler on your two extended index fin-
gers. No matter what the original placement of the ruler,
your fingers always meet in the center of the ruler if you
move them together, as long as you do not suddenly accel-
erate one of them. Notice how your fingers alternate in
their movement relative to the ruler, independent of your
intentions. This effect is a result of the difference between
the sliding and kinetic friction coefficients, whose ratio can
be deduced by observing exactly at what point one finger
begins to slide, and the other one stops. If the distances of
each finger to the center of the ruler are x; and x, at this
point, then it can easily be shown that the ratio of the
friction coefficients equals x;/x,. Note, that since this ratio
remains constant, the values of x; and x, get progressively
smaller for each switch in finger motions. Theoretically, if
the ruler were to remain exactly horizontal, there would be
an infinite number of switches in which finger is moving _
relative to the ruler, before they met at the middle.?

7. Center of mass of a weighted ruler

Tape a few pennies to one end of a ruler. If you have
previously measured the masses of the ruler and pennies,
you can calculate the location of the combined center of
mass, based on the placement of the pennies. See if the
ruler balances on your finger at the predicted point. You
can also mark the center of mass location with tape, and
see that this point is the center of rotation when you fling
the ruler in the air, causing it to rotate.

8. Faster-than-g acceleration of one end of a falling ruler

Rest one end of a horizontal ruler on the edge of a table,
and support the other end with your finger. If you sud-
denly remove your finger support, that end of the ruler i
predicted to have an initial downward acceleration of 1.5 g.
In order to observe that the end of the ruler does, in fact,
have an acceleration in excess of g, place a ball or a penny
on the end of the ruler supported by your finger. Suddenly
remove your supporting finger, and observe that a gap can
be seen between the ruler and the ball or penny, during the
initial part of their descent. This gap shows that the ruler’s
end must be descending with an acceleration in excess of
the 1 g acceleration of the penny or ball. It can be shown
that for no gap to be seen, the ball or penny would need to
be placed within two-thirds the length of the ruler from the
pivot point. If you are showing this demonstration to a
large group, you may wish to use a meter (or longer) stick
rather than a plastic ruler for better visibility. Sometimes
the demonstration is given with a row of pennies arranged
all along the meter stick. Only pennies up to the two-thirds
point have accelerations less than g, and only they can
remain in contact with the stick as it falls. The break in the
row of pennies at a point two-thirds of a meter from the
pivot can usually be clearly seen.
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[image: image3.jpg]Fig. 1. To catch a row of pennies in mid-air, place the ruler with pennies
on it on your raised horizontal forearm. When you quickly swing your
arm forward and down (shown dotted), your hand pushes the ruler
forward out from under the pennies, allowing you to scoop them up.

9. il igl and igl
finger

rulers on your

Your ability to balance a stick upright on the end of your
finger is greater, the longer the stick—a consequence of the
fact that longer sticks have greater moments of inertia, and
smaller angular accelerations as they tip over. Unless your
reflexes are extremely fast, you probably will not be able to
balance an object as short as 12 in. ruler vertically on the
tip of your finger. On the other hand, if you place a clay
ball on the top of the ruler, you probably will be able to
balance it fairly easily. If the ruler is much lighter than the
clay ball, it can easily be shown that the angular accelera-
tion of a toppling ruler with a clay ball on top is two-thirds
the value without a clay ball. It is likely that the 33%
reduction in angular acceleration of the toppling ruler may
be sufficient for you to keep it balanced, unless you have
rather slow reflexes.

.0. Catching a row of pennies in mid-air

Line a row of about a dozen pennies along the non-
grooved side of a ruler. Hold your forearm horizontal, with
your palm and elbow facing the ceiling—somewhat in the
manner of a waiter holding a tray, but with you forearm
horizontal not vertical—see Fig. 1. (The position of your
forearm should be roughly on the same level as your
head.) Place the ruler with its row of pennies on your
horizontal forearm. Be sure that the ruler points towards
your open palm. With one rapid motion, swing your arm,
and sweep your hand forward. As you do so, visualize the
row of pennies “hanging in air,” and you should be able to
scoop them all up as your hand moves forward pushing the
ruler out from under them. A rapid swing of your arm is,
of course, essential since the pennies will fall about 5 cm, if
your arm swing takes a tenth of a second. This demonstra-
tion is the “poor man’s” version of the trick where you pull
a table cloth out from under a dinner setting. Aside from
requiring much less preparation, it works more reliably
(with some practice, and less potential disaster!), and can
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be explained more simply, because you do not have to
worry about the complications of friction—since the pen-
nies are weightless while in free-fall.

11. Maximum angle of a ruler leaning against a smooth
wall

Hold a note pad vertically, and lean a ruler against it like
a ladder resting agamst the side of a building. It can easily
be shown that, if we ignore friction with the note pad, the
maximum angle that the ruler can make with the vertical
before slipping is given by tan 6,,,,=2u, where u is the
static friction coefficient between the bottom of the ruler
and the surface on which it rests. Thus you can determine
the static friction coefficient y, by observing the maximum
angle with the vertical before slipping occurs. Now tape
some paper clips or pennies near one end of the ruler. (Let
x represents the added mass expressed as a fraction of that
of the ruler.) If the added mass is at the top end of the
ruler, and we neglect friction between the top of the ruler
and the wall, you can easily prove that the predicted max-
imum angle for no slipping is given by

x+1

tan 8}, = ( 2;:_ 1 )tan O«

To check this relation, you can compare the measured an-
gles 6, and 6}, with and without the added mass. If you
do not want to bother with a protractor, you can find the
angle of the ruler with the vertical in terms of sin~!(d/1),
where d is the distance of the base of the ruler to the note
pad, and /is the length of the ruler. The reason for neglect-
ing wall friction is that otherwise the problem is indeter-
minate. In any case, the neglect of wall friction should not
be too bad an approximation if the angle 8,y is small, and
the wall is smooth.

12. Tangential speed at the top of a rolling wheel

Rest one end of a horizontal ruler on a sphere or cylin-
der that is free to roll, while holding the other end. Move
the ruler forward, and observe that the sphere or cylinder
rolls forward only half as far as the ruler moves. This
result, which shows up quite well on an overhead projec-
tor, proves that the contact point with the ruler on the top
of a rolling wheel has twice the linear velocity of the
wheel’s center, if the wheel rolls without slipping.

13. Constancy of the angular deceleration of a rotating
ruler

Many plastic rulers have a small hole in their center, but
you can easily make one if yours does not. Balance a hor-
izontal ruler on the conical tip of a ball point pen placed in
the ruler’s center hole, thereby allowing the ruler to rotate
freely about its center in a horizontal plane. Give the ruler
a hard spin, and count the number of rotations, N, before
it comes to rest. Have someone else measure the time, 7', it
takes to come to rest, measured from your initial push.
Repeat the observations two of three additional times, giv-
ing it different amounts of spin each time. If the angular
deceleration of the ruler due to friction is constant, you
should find that the ratio N/T? is the same for all trials.
Equivalently, you should find that a plot of N vs T yields
a straight line.
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[image: image4.jpg]14, Dependence of centripetal force on @ and r

Tape a plastic ruler, grooved side down, onto a low-
friction turntable. Ideally, it should be sufficiently friction-
free so that it spins for a time of at least 3 s when given a
gentle push. (You cannot use the previous arrangement of
a ruler spinning on the tip of a ball point pen in this dem-
onstration because it is not stable enough.) Place a row of
pennies all along the ruler with the pennies in contact. Give
the turntable a spin, and observe which pennies have slid
outward. In general, you will find that up to a certain
distance from the axis the pennies remain in contact, and
beyond that point the pennies have slid outward. For sev-
eral different trials, observe in each case the distance, 7, to
the axis of the last penny not to move, and also the angular
velocity w. If the turntable has very little friction, you can
determine o by timing the first couple of rotations after
you give it a push. Otherwise, you can instead measure the
total time, ¢, it takes for the turntable to stop spinning,
measured from your initial push. The initial angular veloc-
ity @ of the ruler is inversely proportional to ¢. To find the
relation between r and @ (or r and ), we note that the
maximum force of statlc friction: f=umg= mw?r
=constant. Thus the ratio r&” or (7/#*) should be the same
for all spins. Specifically, if one spin lasts half as long as
another, the last penny not to move should be four times
further out from the axis for the briefer spin.

15. Zero net torque using pennies on a balanced ruler

Place pennies at various points along a ruler, such that
the sum of the torques computed about the mid-point of
the ruler is predicted zero for that placement. You may
wish to tape the pennies in place so that they do not slide
off. See if the ruler, in fact, balances at its center as pre-
dicted when placed horizontally on the edge of a pen or
pencil of circular cross section. (If it does not you might
want to check whether the ruler without any coins on it
balances at its mid-point.) You can easily give the demon-
stration on an overhead projector, where the lack of bal-
ance can be best seen by looking at the ruler itself rather
than its projection. By requiring that the sum of the
torques equal zero at the ruler’s mid-point, we need not
consider the torque due to the weight of the ruler.

16. Conservation of linear momentum based on recoil
speeds

In the absence of outside forces, two initially stationary
objects that push off against each other must recoil with
speeds inversely proportional to their masses. Find two
smooth balls whose masses are in the ratio of two or three
to one. Do not use rubber balls, but instead use balls made
of various metals or glass, which have equal diameters of
around 1 in. Incidentally, if you do use a glass ball (mar-
ble) as one of the two, be sure it is sufficiently round, and
rolls smoothly. (Metal balls can be purchased at special-
ized companies, or more generally, companies selling edu-
cational scientific supplies.) Place the two balls in contact
in the groove of a leveled ruler. Remember, if the demon-
stration is done on an overhead projector, you can always
find one orientation for which the ruler is level. Place a
folded index card sandwiched between the balls, and
squeeze the card closed by finger pressure on the balls.
When you suddenly remove your fingers, the unfolding
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card will gently drive the balls apart with equal and oppo-
site momenta. The way to verify this without a stopwatch
is to initially place the balls in contact at a point on the
ruler where they should reach their respective ends of the
ruler at the same moment. Thus if one ball is three times
the mass of the other, its distance to the ruler end should
be a third of the other. (You may wish to first show the
case of two equal mass balls placed at the center of the
ruler.) The advantage of using a folded index card, rather
than, say a spring, to drive the balls apart is that the un-
folding card applies a gentle force over some distance, and
it is less sensitive to nonsimultaneous finger releases as a
spring would be. Just be sure that you do not have sticky
fingers.

17. Hooke’s Law for a ruler clamped at one end

Clamp one end of a horizontal ruler to the edge of a
table, or else just hold it firmly in place. Hang different
masses from the end of the ruler, and observe its deflection
in each case. Determine for what range of values the mass
and deflection are linearly related (Hooke’s Law), and find
force per unit deflection, k, in Newtons per meter. Repeat
the observations allowing the ruler to overhang the table
by different amounts to see how k depends on the amount -
of overhang.

18. Periods of oscillation of a vibrating ruler

Clamp one end of a horizontal ruler to a table, and pluck
the free end causing it to vibrate. You can accurately mea-
sure the frequency of vibrations using a strobe. The pre-
dicted frequency of vibrations can be easily shown to be
f = (1/2m) 3k/M, where k is the force constant mea-
sured in the previous demonstration, and M is the mass of
the ruler. Try using different amounts of ruler overhang,
and the appropriate value of X in each case from the last
demonstration. Also, try adding some mass, m, to the end
of the ruler, and observe the frequency in this case. The
predicted frequency can be found using the preceding
equation with M replaced by M+ 3m.

19. Acceleration of the end of a vibrating ruler

An object undergoing simple harmonic motion of ampli
tude 4 should have a maximum acceleration given by
a=w’A=(27f)?4. For a sufficiently large amplitude:
A>g/2nf )2, the maximum acceleration, therefore, ex-
ceeds g. You can verify this relation using a vibrating ruler.
Clamp one end of a horizontal ruler to a table with its
grooved side down (or else just hold the end of the ruler on
the table firmly in place by hand). You may find it conve-
nient to decrease the ruler’s vibration frequency by taping
about six pennies to its underside near its free end. (This
will make the amplitude 4 at which a=g larger, and easier
to measure.) Place one free penny on top of the ruler at its
end. Pluck the ruler, and observe the penny as the ruler
oscillates. You should find that for small oscillations the
penny remains in contact with the ruler at all times, but for
large oscillations it loses contact, causing an audible clat-
ter. It may even jump off the ruler in some cases. Measure
the largest vibration amplitude for which the penny re-
mains in contact with the ruler at all times (no clatter).
The penny should begin to lose contact with the ruler when
the ruler’s downward acceleration just exceeds g. See if the
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[image: image5.jpg]amplitude at which this occurs is given by A=g/(27f) Z
where f is the vibration frequency, measured by a strobe.

20. Resonant vibrations of a ruler

Place a board having a thickness of about 2 cm perpen-
dicular to a firm surface such as a table. Balance a hori-
zontal ruler with its mid-point resting on the edge of the
board. Press your thumb down very firmly on the center of
the ruler, and pluck one end. Notice that the other
(“free”) end vibrates with large amplitude. These resonant
oscillations occur because the vibrations of the plucked end
cause small vibrations in the supporting board, which res-
onantly drive the free end. Now repeat the demonstration,
but with the ruler held down firmly at a point other than its
mid-point. The amplitude of oscillations at the free end will
be smaller than before, because of the mismatch in the
frequency of the “driving” oscillations (of the point of
support), and the natural frequency of the free end. Obvi-
ously, the closer the point of support is to the mid-point of
the ruler, the smaller the mismatch in frequencies, and the
greater the amplitude in oscillations of the free end. A
simple modification of the demonstration allows you to

erform it on an overhead projector. Press the mid-point of
the ruler against the vertical column that supports the pro-
jector lens, and the ruler vibrations will occur in a hori-
zontal plane, making them readily visible on the screen.

21. Using a ruler “diving board” as a projectile launcher

This demonstration allows you to launch pennies verti-
cally upward with a controllable velocity, so you can see if
they rise to the predicted height. Clamp one end of a hor-
izontal ruler to a table with its grooved side down (or else
just hold it against the table firmly by hand). Tape one
penny to the free end of the ruler, and observe its oscilla-
tion frequency with a strobe. The maximum velocity of the
penny during its oscillation of amplitude, 4, and frequency,
f, can be expressed as v=2mf4. Replace the taped penny
by a free penny at the end of the ruler. Pull the end of the
ruler downwards by a measured amplitude, 4, and release
it, causing the penny to fly upward. Have someone estimate
its maximum height with a meter stick. For greater accu-
~acy, you might want to average the results for five succes-
_ e launches, using a fixed ruler deflection amplitude. The
predicted maximum height is given by y=v/(2g)
=27f24%/g. You might want to try a range of deflection
amplitudes. For larger amplitudes, you can make more
precise measurements, but in these cases the penny is more
likely not to fly directly upwards—a source of some error.
This occurs because as the ruler swings upwards, the penny
slides along the ruler, due to “centrifugal force.” As a
result, it leaves the ruler before the ruler reaches its equi-
librium position. One way to avoid this source of error is to
make a cardboard “ledge” at the end of the ruler, which
prevents the penny from sliding off.

22. Wave source for a ripple tank

In a ripple tank, expanding circular waves can be created
by a vibrating source that periodically dips into the water.
When two nearby sources are driven in phase by a com-
mon vibrator, the resultant waves form an interference pat-
tern that can be observed on an overhead projector, as
shown in Fig. 2. You can make a ripple tank using a plastic
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Fig. 2. A ripple tank made from a plastic box picture frame. The double
wave source is a ruler resting diving board style on a wooden block. Two
paper clips with clay balls attached to the end of the ruler break the water
surface at a regular frequency when the end of the ruler is plucked,
causing the resulting interference pattern that lasts a second or two.

box picture frame (the type used for photographs). A good
size would be around 30 by 35 cm—which is not too large
to fit on an overhead projector. Fill the frame with water to
a depth of about a centimeter. Place several wooden blocks
next to the tank, so that when one end of a ruler is held
down on the blocks, the bulk of the ruler projects over the
water like a spring board. Make a double wave source from
the plastic ruler by taping two bent paper clips at its end.
The straight ends of the clips should be at right angles to
the ruler, and be about 2 cm apart. They should just reach
the water surface when the ruler diving board is in place on
the blocks. (If they do not try using different size blocks to
rest the ruler on, or else vary the water level.) Put two 0.5
cm diameter clay balls at the ends of the paper clips, so
that when the diving board is in place, the clay balls lie half
below the water surface.

When the end of the ruler on the blocks is pressed down
firmly, and the free end is plucked, circular waves emanate
outward from each clay ball for a brief time while the
oscillations last. You should observe a beautiful interfer-
ence pattern on the overhead projector, with clearly de-
fined directions for the minima in the pattern. For best
results focus the projector on the ruler, rather than on the
water surface, and allow the water to settle completely
between trials. (Adding a shelving “beach” of folded card
would minimize reflections of waves from the edges of the
tank, but this is not really a problem here, since the re-
flected waves do not affect the interference pattern, which
only lasts a second or two.) Try adding some mass to the
end of the ruler, which slows the oscillations and makes
them last longer. This last addition should also increase the
wavelength, A, from which you can predict the directions
for minima: si.n’l(m+ %)/l/d, where d is the source sepa-
ration, and m is an integer. By watching the waves below
the ruler, you may be able to estimate their approximate
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[image: image6.jpg]wavelength. Once you have estimated A for a given length
of ruler overhang, you may wish to prepare a transparency
on which you have drawn the directions predicted for min-
ima, to place under the ripple tank.

23. Radius of gyration for different shapes rolled down
an inclined ruler

Rest one end of a plastic ruler on a ledge about 3 mm
high, and roll different shaped objects down the slight in-
cline. Two shapes of particular interest would be the solid
sphere, and the cylindrical shell (hoop). Both should be
very smooth and round, and not so heavy as to deform the
ruler as they roll down the incline. And, in addition, the
cylindrical shell should not be too long, otherwise it will
fall off the ruler as it rolls down. A good choice for the
hoop might be a 5 cm length of 2 cm diameter tubing, but
the dimensions are not especially important. When rolling
the hoop you probably want to make the grooved side of
the ruler facing down, but when you roll the ball, its
grooved side should be up. For any round shaped object,
the predicted time to roll down an incline of vertical de-
scent y is given by t = |(2y/g)(1+k), where k is the
radius of gyration. Thus if you were to roll a sphere (k
=2/5), and a hoop (k=1), down the same incline, the
predicted ratio of times of sphere to hoop would be V/(ﬁ
= 0.84. If you average the results from five or ten trials,
you are likely to find a measured value no more than a few
percent different from this value. (The advantage of work-
ing with ratios is that uncertainties in the height of the
incline do not affect the results.) The results should be
independent of the masses and radii of the bodies.

24. Oscillations of a ball in a potential well made from a
flexed ruler

It can be shown that a solid ball rolling in a potential
well whose radius of curvature is r will oscillate about the
bottom of the well with a small amplitude period of T'
= 2 +7r/5g. To make a potential well, put one ruler on
top of a second, and tape them together at the middle.
(Both should have their grooved sides facing up.) Pry the
ends of the rulers apart, and wedge a 2 cm thick piece of
sponge or foam rubber in at each end, causing each ruler to
flex into a concave-outward shape. Remove any tape that
obstructs the groove on the top ruler. Place the two rulers
on a horizontal surface, such as an overhead projector.
When a smooth metal ball is rolled in the groove of the top
ruler, it will roll back and forth between turning points
equidistant from the center, with the oscillations persisting
for a considerable time. Count a large number of oscilla-
tions, and see how well the period matches the small am-
plitude prediction for a solid ball: T = 2 /7r/5¢. If the
ruler is bent into the approximate shape of the arc of a
circle, the radius of curvature, 7, can be found from: r=/*/
2d, where /is the length of the ruler, and d is the separation
of the ends caused by the insertion of the sponge. (Even
though the exact shape of a bent beam is noncircular, the
approximation is not too bad in the present case, where the
bending is small.) In addition to observing free oscilla-
tions, you can also demonstrate driven oscillations, and
resonance, by very gently moving the rulers back and forth
at the proper frequency and phase.
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25. Oscillations of a ball in other types of potential wells

You can make an asymmetric potential well by inserting
different thicknesses of sponge between the rulers at the
two ends—using perhaps twice as much sponge at the left
end as the right. The asymmetric potential well can be used
to explain why most materials expand when heated. To
show this, place a ball in the top ruler groove, and give it
a push, causing the ball to oscillate. Observe the end points
of each oscillation. Due to the asymmetry of the well, the
right turning point (where the well rises less steeply),
should be twice as far from the ruler center as the left one.
Thus if you observe the oscillations over time as they grad-
ually damp out, the mid-point of the oscillations should
gradually move towards the center of the ruler. The idea is
quite analogous to what happens as a material cools, and
atomic oscillations become less vigorous. This causes the
mid-point of the oscillations to shift towards smaller val-
ues, resulting in contraction of the material.

You could also make a double (symmetric) potential
well. First tape a stack of two pennies to the underside of
the middle of a ruler, and tape three pennies to the under-
side at each of its ends. Place the ruler on top of a second
one, and press the rulers together at their 1/4 and 3/4
points, taping them together there. Remove any tape that
obstructs the groove. The result is a double well shape,
whose middle hump is not as high as the rise at the two
edges. A ball rolled from one end will make it over the
middle hump if it has enough energy. Assuming it does not
have too much energy, the ball will oscillate, and eventu-
ally settle down in one of the wells. You could also illus-
trate how, through the process of driven resonant oscilla-
tions, you can induce the ball, initially at the bottom of one
well to make the transition to the other.

Using fwo such double wells placed side by side, you can
give a demonstration of chaos on the overhead projector.
Place a ball in the left well of each double well. With the
balls initially stationary at the bottom of their respective
wells, very gently start moving the double wells back and
forth together. Observe how the balls oscillations about the
bottom of the wells remain in phase. Now, slowly increase
the amplitude of your shaking, and observe the change in
the ball’s behavior. As one or both of the balls nears or
reaches the top of the hump separating the wells, the onset
of chaos occurs-i.e., initially small differences in the posi
tion or speed of the balls (or the shapes of the wells),
become greatly amplified, and the balls no longer oscillate
in phase.

26. Oscillations of a ball in a rotating single well
potential

Make a single well potential using two rulers, as de-
scribed in Demonstration 24. Place the two rulers on a
rotatable turntable, such as a “lazy susan.” (If you want to
show this demonstration on an overhead projector, you can
make a transparent low friction turntable using a ball bear-
ing sandwiched between two lucite disks.) The center of
the rulers should coincide with the center of the turntable.
Place a smooth metal ball on the groove of the ruler, a
distance x from the axis, and rotate the turntable. If the
turntable is rotated at a certain critical angular velocity, o,
the centripetal force me*x just matches the component of
gravity along the incline, mg tan 0, where 6 is the angle of
the ruler with the horizontal at a distance x from the other.
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[image: image7.jpg]If the curved ruler shape is parabolic (so that tan 6 is
proportional to x), the match between centripetal force
and gravity along the incline wall will hold at all x.
Similarly, if the centripetal force is greater than or less
than the component of gravity along the incline, that im-
balance will have the same sign at all points, As a conse-
quence, a stationary ball at an arbitrary point in the groove
should either move towards the center or away from it,
depending on whether the ruler is rotated at less or more
than a specific rotation rate. To find the critical rotation
rate, we take the shape of the well to be given by y=2d(x/
1)?, so that y'=tan 8=4 dx/P, where d is the separation
between rulers at their ends, and / is the length of the ruler.
Requiring that mg tan 6=mo’x yields the critical angular
velocity: ® = 4dg/, P rad/s. If you wish to find the critical
angular speed experimentally, you need to rotate the turn-
table (by hand) at a slowly increasing speed, and see when
a ball in the groove starts moving outward. When a ball
does begin to fly outward you need to decrease the rotation
speed slightly. In practice, continued speed adjustments
may be necessary to keep the ball moving back and forth
between the center and end of the ruler. You could then
“ave someone measure the time for a specific number of
- rotations to find the angular speed, and see if it matches the
predicted value. If your turntable is quite friction-free, you
can observe that as you approach the critical angular ve-
locity from below, the period of oscillations of the ball
steadily increases. (Right at the critical angular velocity
the ball can remain at rest at any point on the ruler.)
The reader may wonder whether a better way to do the
demonstration would be to use a rotating turntable of
known speed, such as a 33} rpm record turntable, and
make the curvature of the ruler what it needs to be to
match that particular speed. However, one problem with
this alternative is that, in practice, the ruler curvature will
either be slightly smaller or slightly larger than it needs to
be for the particular speed. In the former case, the ball will
stay at the center (or oscillate very slowly about the cen-
ter), and in the latter case, it will move outward, so a
controlled variable speed turntable is probably required.

27. Conservation of angular momentum in a rotating
single well

Angular momentum conservation can be demonstrated
if you have a turntable that has very low friction, is highly
stable, yet not too massive—see the preceding description
of one suitable for an overhead projector. You can demon-
strate conservation of angular momentum by rolling a steel
ball along a rotating single well potential made from two
rulers (constructed as described in the preceding demon-
stration), which has been placed on a rotating turntable.
You should be able to observe that as the ball passes
through the mid-point of its oscillation in the well, the
angular velocity of the turntable increases owing to the
decrease in the moment of inertia of the system. How no-
ticeable the effect is depends, of course, on the relative
masses of ball and turntable, and on the amount of friction
at the axle. It is also important that the turntable not tend
to tip when the ball is at the extremes of its oscillations.

28. Stability of inverted pendulum

A compound pendulum in its inverted position is an
example of a system in unstable equilibrium. The inverted
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Fig. 3. A coffee-stirrer pendulum is placed in the inverted position at the
end of a ruler held in place at the edge of a table. If the end of the ruler
is pulled down with sufficient amplitude, and released, the pendulum
remains in its inverted position for a few seconds until the ruler oscilla-
tions damp out sufficiently.

pendulum can, however, be stabilized if the axis is oscil-
lated in an appropriate manner. Make a light compound
pendulum from a light piece of wood, such as a coffee
stirrer or popsicle stick. Make a hole at one end of the
stick, and place a thin nail through the hole to serve as an
axle for the pendulum. When the nail is taped to the end of
a horizontal plastic ruler the pendulum should be able to
rotate freely in a vertical circle. Press one end of the ruler
down at the edge of a table, so that the ruler projects
forward like a diving board with the pendulum at its end.
If you put the pendulum in the inverted position, and re-
lease it, it will, of course, topple over. However, if the end
of the ruler is plucked, with the pendulum initially in the
inverted position, it will not topple over for a few seconds,
while the ruler is vibrating with sufficient amplitude—see
Fig. 3. Why does this occur?

Consider the torque on the inverted pendulum when it is
a small angle 6 away from its inverted orientation:
7=14mglf, where the plus sign reminds us that this is not a
restoring torque. In the absence of ruler vibrations, New-
ton’s Second Law: I6= +3mgl6, yields only divergent so-
lutions of the form: 6=4 cosh wt+ B sinh wt. But, now
suppose the ruler vibrates with a frequency @y, so that the
end of the ruler has an instantaneous acceleration
a sin wyt. In the noninertial reference frame moving with
the end of the ruler, according to the equivalence principle,
we may take the acceleration of gravity to be g+a sin axf,
so that Newton’s Second Law becomes

16=+3mi6(g+asin wgt). 3)

Note, that when @ > g, then for part of each ruler vibration
the torque on the pendulum is of the restoring type (neg-
ative sign). If this occurs for a sufficiently large fraction of
each vibration (if @ is large enough), then Eq. (3) admits
an oscillatory solution about the vertical, and the inverted

Robert Ehrlich 17




[image: image8.jpg]ruler will not topple. However, when the ruler vibrations
gradually damp out, the fraction of each oscillation over
which the sign of the torque is negative decreases, and
eventually the inverted ruler becomes unstable, and it top-
ples.

There is still another reason that partly explains the sta-
bility of an inverted pendulum when the point of support
oscillates. In practice, the end of the ruler moves in an arc
of a circle, rather than straight up and down. Conse-
quently, the pendulum rocks back and forth in a direction
at right angles to the plane of its swings. This rocking
motion causes the friction at the axle to increase, and helps
stabilize the pendulum in the inverted position. A fuller
explanation of the theory behind the stability of the in-
verted pendulum, and experimental studies using more so-
phisticated apparatus can be found elsewhere.’

29, Whirling a ruler on a string

Tie a string to the end of a ruler (through a hole), and
rapidly whirl the ruler on the string in a vertical circle.
Now, try it again, but this time, before you begin to whirl
it, give the string enough twists so that the ruler starts to
spin when hanging from the string. Begin whirling the
ruler in a vertical circle once it has begun to spin rapidly.
The difference observed in the two cases—whirling with
and without spin—should be quite pronounced. You
should find that when the ruler is whirled while spinning,
a loud whirring sound is heard, and the resistance to rota-
tion feels much greater—both phenomena being attribut-
able to the greater turbulence that arises when the ruler is
spinning.

30. D d of ing di on initial velocity

In this experiment you will observe a couple of pennies
move across a table top, and observe how their stopping
distances depend on their initial velocities. For this pur-
pose, it is important that the two pennies have the same
coefficient of kinetic friction. To check this, line up the two
pennies against the edge of a plastic ruler. Rapidly push the
ruler forward about 5 em perpendicular to its length, so
that when the ruler stops the pennies fly across the table
together with a common speed. If the pennies travel the
same distance before stopping, they must have the same
coefficient of friction. Check pairs of pennies a few times,
and select the best pair.

Now, we want to launch the pennies across the table at
different speeds, for example, in the ratio 2:1. To accom-
plish this, you need to pivot the ruler, so that one penny
before it flies away from the ruler, travels in a circular arc
half the radius of the other. The technique is to use your
left thumb as the pivot (against which the left end of the
ruler rests). Push the right end of the ruler forward with
your right hand, and use your left index finger to stop its
rotation, thereby causing two pennies placed against its
leading edge to fly off when the ruler stops. If one penny
was initially twice as far from the pivot, it will fly off with
twice the speed of the other when the ruler suddenly
stops—see Fig. 4. According to the quadratic dependence
of stopping distance on initial speed, the faster penny
should travel four times further than the other. (You may
want to draw a line showing where the rotating ruler is to
be stopped by your finger, so as to failitate measurement
of stopping distances.)
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Fig. 4. Two pennies are placed on the edge of a ruler which pivots about
the left thumb when your right hand shoves the ruler forward. The ruler
is brought to rest by your left index finger in the dotted position. If one
penny was twice the distance to the pivot as the other, it will fly away
from the ruler at twice the speed, and it will travel four times the distance
from the dotted line.

31. Dropping and launching two coins with a ruler

The independence of horizontal and vertical motions re-
quires that, ignoring air resistance, an object dropped from
rest hits the ground the same moment as one simulta-
neously projected horizontally. You can easily use a ruler
to launch a coin horizontally off a table at the same time
you drop a second one from rest. To accomplish this hold
the ruler horizontally, with one end resting on the edge of
a table. Place a quarter on the table, so that if you sweep
the ruler across the table, it will launch the quarter off the
table in the horizontal direction. But, first place a second
quarter on top of the ruler, so that during its sweep, the
ruler moves out from under the coin, thereby causing its
descent to begin at nearly the same moment as the other
coin is launched horizontally. Both coins should hit the
ground the same time, if we can neglect air resistance,
which is reasonable for two pennies. However, if the same
experiment is repeated using two very light objects, such as
two pieces of styrofoam, the one that falls directly down-
wards hits the floor first. This is because it experiences an
appreciably smaller vertical component of the force of air
resistance (proportional to v,|v|), since it travels more
slowly.

32. Ruler diffraction grating

In a darkened room, place a laser on a table so that its
beam shines on a wall several meters away. Align a ruler
with the beam, and raise the far end of the ruler about a
half inch higher than the end nearer the laser, so that the
laser beam reflects off the ruler at near-grazing incidence.
The placement of the ruler should be such that the beam
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[image: image9.jpg]illuminates the finest markings near the edge of the ruler—
either the millimeter markings on one edge, or the 16th in.
markings on the other. If the alignment of the ruler is such
that the laser beam hits the ruler very nearly at its edge
(which is the only place a near-grazing beam can illumi-
nate the spaces between the raised marks), you should see
a diffraction pattern on the wall, from which the wave-
length can readily be measured.'® (Although a plastic ruler
can give good results, it cannot be denied that an appro-
priate steel ruler is better.)

33, Measuring the diameter of a fog droplet with a ruler

Let us not forget that we can also use a ruler to measure
distance! If you view a distant white street light on a foggy
night, you should observe a colored blob, or halo, centered
on the light, with its outer edge being red. The blob is due
to the combined interference patterns from many fog drop-
lets; its angular diameter is inversely proportional to that
of the average fog droplet. Hold up a plastic ruler at arms
length, and measure the diameter of the outer edge of the
5lob, d, in meters. Assuming your arm is roughly a meter
" long, the angular radius of the first minimum in radians is
roughly jd. The diameter of the average fog droplet in
nanometers can then be found from: D=700/sin 6, where
we have taken the wavelength of red light to be 700 nm.
Actually, you need not wait until the next foggy night to do
the experiment. If you wear glasses, just fog them up with
your breath, and view an unfrosted light bulb some dis-
tance away in a dark room.

34. Toppling ruler and the uncertainty principle

As this demonstration shows, the uncertainty principle,
normally reserved for discussions of quantum systems has
implications for macroscopic systems as well. Balance a
ruler on end on a table, and allow it topple over, while
someone measures the toppling time with a stop watch.
One way to make the ruler’s initial orientation nearly ver-
tical is to press it against a right angle, such as the vertical
:dge of a draftsman’s triangle placed on a horizontal sur-
~ face. A ruler placed on end topples over in accordance with
the equation for a compound pendulum. Now, a simple
pendulum of length /, which is released from rest at an
angle & with the positive y axis, reaches the bottom of its
swing (§=m), in atime: T = F(k) I/g, where k=sin HEd
—8), and F(k) is the complete elliptic function of the first
kind. The only difference for a compound pendulum, con-
sisting of a uniform rod pivoting about one end, is that / is
replaced by 3/. Now, consider a ruler standing on one end,
which initially makes a small angle 6 with the vertical. The
predicted time for the ruler to topple over (reach 6=7/2),
is given by

o
T=[F(k)—F(k’)]“\§, (4)

where k' =sin 7/4, and F (k') =2.08. Now, for small 6 (k
close to one), F(k) takes the asymptotic form
F(k)=3n[16/(1—k)]. If we let 6=10"" rad, so that

119 Am. J. Phys,, Vol. 62, No. 2, February 1994

k=sin}{(r—0)=1—6*/8=1— 1072"/8, we find that
F(k)=2.426+2.302n. Substituting into Eq. (4) yields

21
T= v?g(o.346+24302n1. (5)

For 6=10"", 1072, 1073, 10~* rad, Eq. (5) predicts top-
pling times of 0.382, 0.715, 1.046, and 1.388 s. Based on
your measured time, you can use these results or Eq. (5) to
estimate how closely the ruler was initially aligned with the
vertical. Note, that increasing the ruler alignment with the
vertical by a factor of a 1000 increases the toppling time
only by 1 s. The infinite toppling time predicted for a per-
fectly aligned ruler is, of course, unattainable because of
quantum fluctuations.
To find the uncertainty principle limit, start with

ALAG>, (6)

where we can express the uncertainty in angular momen-
tum, AL=IAw= imPAw, so that

3%
AmAG}m 4 (7

If either Aw or A@ is made too small, the resulting in-
creased size of the other variable causes the toppling time
to grow. The optimum relationship between the two vari-
ables can easily be shown to be

Be
A= ‘J‘EAO' (8)
from which Eq. (7) yields an optimum value of A

e 3%2 174 g
so=(ggrp) - =

A typical plastic ruler has a mass of about 11 g, for which
Eq. (9) yields A@=1.5x 107! rad. Substituting this angle
in Eq. (5) yields a maximum toppling time of 5.5 s.

11. CONCLUSION

This diverse collection of demonstrations with a plastic
ruler was compiled to illustrate how much can be done
with the simplest “equipment” to illuminate the principles
of physics. In these days of tight budgets, the existence of
such experiments and demonstrations have considerable
value—though, of course, they should not serve as a ratio-
nale for reducing equipment budgets! But even apart from
budgetary considerations, there is great value in experi-
ments and demonstrations that use apparatus, which stu-
dents are likely to find around the home. Could one come
up with 34 demonstrations for some other simple objects?
Perhaps there is another suitable object—but, that is for
another paper.

The author is grateful to Robert Ellsworth, Susan Go-
mez, and Robin Giles for their helpful suggestions on this
paper.
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[image: image10.jpg]Geriite: Stativrahmen
Deckel mit Heizung
Kunststoffbecher
6 Klemmstecker
Angelschnur, 30 cm
Stromversorgungsgerat
2 lange Experimentierschnire
auBerdem: L&schpapier

Diese Form kann "Wa&sche-
Trocknen" im Unterricht
annehmen !

Wir untersuchen, welchen EinfluB die Wédrme auf die Verdunstung hat und welche Rolle die Oberfldche
des trocknenden Gegenstandes spielt.

Fir die ,, Versuchsdurchfiihrung® erhalten die Schiilerinnen und Schiiler folgenden Text:

Bereite drei etwa 5 cm - 10 cm grofle Streifen Loschpapier vor! Durchbohre zwei von ihnen in
der Nihe einer schmalen Seite mit einem Bleistift, damit du sie spdter aufhingen kannst! Tauche
alle drei Loschpapiere kurz und gleich tief in Wasser; die durchbohrten Enden sollen trocken
bleiben!

Stecke die beiden durchbohrten Loschpapiere zwischen je zwei Stecker in Punkt A und B an den
Stativrahmen! Falte das dritte Loschpapier zu einem Pdckchen zusammen (viermal falten), damit
du eine kleine Oberfliche erhdltst (Wasser darf dabei nicht ausgedriickt werden!), und hinge es
mit Hilfe der Angelschnur und zwei Steckern in Punkt C auf! Das Pdckchen soll in gleicher Ho-
he neben dem Papier A hdngen (siehe Abb. 1)!
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